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The state of stress is determined in the neighborhood of an annular slit on the 
surface of an infinite solid cylinder. By using the results of Cl], stress intensity 

coefficients are found in the case of pure torsion and extension along the cylin- 

der axis. 

The pertinence of a state of stress analysis for a notched circular sample under 

torsion and extension is governed by the fact that the sample shape turns out to 
be important for standard fracture tests, 

1. Let a solid circular cylinder of unit radius with annular notch with inner diame- 
ter 2a be twisted by moments f]!f (Fig. 1). The cylinder is referred to a cylindrical 

system of (r, 8, z) coordinates with center in the plane 
of the slit. It is assumed that the side surface of the 

cylinder and the surface of the slit are stress-free. The 
shear stresses in the elementary solution of the problem 
of torsion of a shaft of unit radius are the following: 

Fig. 1 

In order for the surface of the slit to be stress-free, it is 

necessary to consider an additional state of stress which 
is independent of the angular coordinate 8 and is char- 
acterized by a single nonzero component of the displace- 
ment ug zc u (I”. a) which satisfies the equation 

tf’tr 2 Au (1 
mT’I_ -- $11 

$ &” = 0 (l.2) 

The shear stresses are defined by the formulas 

Let us consider a semi-infinite cylinder (z > 0) and let us represent the solution of 

(1.2) as 
m &Jl (h,,4 

u (r, 5) = 2 2 h,, exp (--h,,r) (1.4) 
n=1 

Here J1 (h,z) is a Bessel’s function of the first kind and h, are roots of the equation 

h,J,’ (A,) - J1 (A,) = --h,J, &d = 0 

The shear stresses on the side surface are zero, and are determined as follows on the 
endface in conformity with (1.3). (1.4) : 
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(1.51 

The boundary conditions in the z = 0 plane are 

Q (r, 0) = - ~fi (r, 0), lZ<r-<I 

u (r, 0) = 0, O<r<a (1 .q 

Satisfying these boundary conditions and using the relationships (1.4), (1.5). we obtain 
the dual series equations 

(1.7) 

2 B,,J1 (hlLr) -= $ r, a<r<i (1.8) 
12=1 

Following [ 11, let us set 

- $ r + i B,,J, &r) = - $- 5 -- , 6 (t) dt 

?‘ ft2 - rLr 
r<a 

TX=1 
(1.9) 

Then on the basis of (1. 8), (1.9). we find 

B,, = 2.~;’ ()1111) {g (1~) sin (h,,u) c&l (1.10) 

(1.11) 

The function g (u) satisfies a Fredholm integral equation of the second kind with the 
symmetric kernel [ 11 

g(t) = [g(zL)K(rl. t)dt +$ +g(U)dii (1.12) 

0” 0 

-1Sut1, (y) - sh (ty) sh(rcy)] dy (1.13) 

Here I, (y), K, (Y) are the modified Bessel’s functions of the first and second kind. 
respectively. using the power series expansions for sh (ty), sh (uy) and I, (y), let 
us represent the kernel in (1.12) as 

K (u, t) = - -g Pf’ o”,h.+1 (u) (1 .M) 
Ii=0 
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‘t 
&I = y$- 

y h’z (I/) a I3(y) y2ndy (12 = 2, 3, . .) 

0 

(1.16) 

Taking account of the expansion (1.14), the solution of the integral equation (1.12) will 
be sought in the form 

g (t) = C(a) i z’Cm+$zm’r (1 .lTi) 
rn=zO 

The constants I’,,,, in (1.17) are determined from the solution of the infinite system 
of algebraic equations 

E’,,,, = - i P,i,+r CL,,, sm+t -‘- 6,” (I/l = 0, 1,2, .) (1.18) 

Here h’=o 

cs 

Gkt1, 1 = x I 
pt2n+1 (pi13 

% (9, 
_ i 

,,z% 
$ “rr -+ 1) (2n - I)! - p-:1 (2/C -t 3) (” - l)! (n -!- I)! 1 

(1.19) 

C2kS1, mt1 = 5 u?WQ,+~ (II) du = 

” 

The constant c (a) is determined from the equality (1.11) and the expansion (1.17) 

(1.20) 

The system (1.18) is quasi-regular. In order to show this, let us first prove that 

tn_n zmtl(U)==O’ lim b Ku<1 (1.2i) 

We substitute the expression for the coefficients CL, in the series defining bzmcl (u), and 
we change the order of summation and integration. We then obtain 

n- 

b 2~:lfl (u) = x2 (a, ,+ 1)! 5 KzO yzmtl sh (w) dy 12 (Y) 
(1)~ = I, 2, . .) 

0 

Using the asymptotic expansions for the modified Bessel’s functions.we obtain for large m 

b 
2m+1(4 - I + 

15 (2 - u) 225 (2 - u)z 
4(2na+l) + 32(2n~+1)2rtj +-... 1 - 

225 (2 + u)” 1. 
+ 32(2ta+1)2m ’ “’ _ 1 (1.22) 

Hence, (1.21) follows. Let us note that the values of u, for large n can be determined 

from the asymptotic formula 

(1.23) 

Values of u, according to (1.16) (first row) and (1.23) are presented in Table 1. 



300 B.A.Kudrlavtsev and V.Z.Parton 

Table 1 

2 3 1 4 ( 5 1 6 1 7 1 n-- 
- 

117.10-’ 297.10-l 276 ‘l98. 10’ 1’1”.10” 587. IO” :;L’!:, lo” 

80,10-’ 27/r.10-1 267 489.10’ Ii1 .lo” 584. IO4 :jz7.10i 

1 --.- 9 10 1 11 ( --g- ( 13 1 14 1 ‘3 
-- ---_ 

235.10” 212. lOlO 235.1012 312.10’4 490.10’G 894. IOl” 16’1. IO” 

23i.ios 216.10’0 ?$I. 1012 32’1.10’4 511.101G 946.10’8 “L’:! . cu” I 

A comparison shows that the exact values of u, for II >, 5 differ slightly from the asym- 
ptotic values. 

Estimating the coefficients of the infinite system (1.18) we find 
cL?iit2 

1 C2k+l,2m+l I d lb*m+1 (QI I Zk + 2 7 0~~7I<<<l 

Consequently m 

SSm+i = 2 I Czk+] 2m+l ) 4 + 1 f)2,+l (a) 1 1 In (1 - n?) -:- CL? ) 
k=t ’ 

(124) 

We obtain from (1.23), (1.24) that starting with some number IH =z I)?’ the following 
inequality holds : 

s ml+1 < 1, m&m’ 

Thus, the system (1.18) is quasi-regular for 0 < n < 1. 

Let us use the relationships (1.5) (1.9) to determine the shear stresses on a continu- 
ation of the slit CL 

Q)(r, o)=-+?.+.)p~~ glt), 
1‘ I/t- -- rl 

r<a (1.25) 

If the expressions (1.17). (1.20) are substituted into (1.25), then it can be shown that 
the shear stress 70~ (‘) on the continuation of the slit will have a singularity of the fol- 

lowing form : 
~8 (r, 0) = - ;$?_J$ fJ P2m+lr2m+1 + . . ., r < a (1.26) 

m=o 

Taking account of (1.26), we find the stress intensity coefficient at the slit vertex p]. 

KIII = !e [~h-c (a - r) zez (r, 0)] = - %p J/f g (a), r< n (1.27) 

Using the expansion (1.17). we can write 
m 

K 
ir* 

M’ mP, -_ P - 4 1/z m=O 
2m+la2m+1 P 

a2m+3 -1 

p,+, 2m + 3 
) 

(1.28) * 

??I=0 

The solid line in Fig. 2 represents the dependence of the quantity 

M* zz 3/4~X-‘l7 R -‘JzK& 

on the dimensionless radius (a = a/R) of the vertex of the crack (fi is the cylinder 
radius introduced instead of the unit radius. It is seen that for small a (a deep annular 

crack), P, - 1, and Pzktl - 0 (k = 1, 2, . ..). Then it follows from (1.28) 
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Km - 
s/4 jjf j+iza-‘,‘z (1.29) 

This result (the dashed line in Fig. 2). follows from the known Neuber [S] solution of the 
problem of torsion of a body of revolution containing an external groove. Conversely, 
for shallow grooves on the surface of a cylinder, a half-plane with a slit emerging on its 

boundary can be considered under the condi- 
tions of antiplane strain (Fig. 3). In this 
case the boundary conditions are the fol- 

lowing : 

Fig. 2 

-- 
t -&’ I 

a 

! ------- I --- - 
b 

Fig. 3 

T Zr c 0, J: = 0; u = 0, y -= 0, l--a<x 

z %(I _ x), 
aI=- * IJ = 0, O<z<l-a (1.30) 

The last condition corresponds to the selection of the stresses (with opposite sign) origin- 
ating at the location of the shallow groove in the torsion of a solid cylinder of unit radius. 

In this case we have au au 
Au=& T~~=I.LG;’ Tz, =Pz 

Let us represent the displacement and stress components as follows: 

u (x, y) = 5 A (A) e-hy co.7 hxdh 
0 

00 

-rzs = - p 1 hA (h) e-hu sinhxdh, r,, = - p fhA (h) e-)ku cm hxdh 
0 0 

Satisfying the boundary conditions (1.30), we obtain after integrating ‘Czy with respect 

to x m 

I ’ A (h) sin hxdh = ‘$ O,<x<l-a 

* 35 

s 
A (h) cos hxdh = 0, x>i--a 

0 

Let us introduce a new unknown function L (t) 
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Then 

Taking account of (1.31). the expression for the shear stresses on a continuation of the 
slit is the following: 

Tzy (J, 0) = 
2 1112 

x 1/x” (1 - a)% [ 
1 _ 2 (1 - a) 

- 
rc I + . ..( 2>1--a (1.32) 

Terms bounded as 3c _’ 1 _ a are discarded here. Taking account of (1.32), the stress 
intensity coefficient p] is 

K III = lim VL!n [z - (1 
N-WI--Q 

-a)] r,y(s, 0) = &I@+[1 - +q (1.33) 

Hence, in the limit case 

.%I* = 
3111 3 

4 GK,,,, = 8 l/l-a [I - 2Kl(l -a)] ’ 
2-s (1.34) 

The dash-dot line in Fig. 2 corresponds to (1.34) (fl is the characteristic length intro- 
duced instead of unit length). 

Combining all three solutions, the exact solution (1.27) the solution for the case of a 
deep slit (1.29), and the solution for a shallow groove (1.33), let us represent the stress 
intensity coefficient as follows (rlllas is the maximum stress in a net-section): 

F (3) = sjsx3 (1y1*)-l (exact solution) 

F(a) = fi,v (x) = 3/gx’/’ (deep slit) 

F (x) = FA (JI) z x3 (1 - ;Oli2 [I - -$ (1 - x)1 (shallow groove) 

Values of F (a), F~v (a) and F-4 (a) are as follows: 

0.1 0 .3 0.5 0; ti 0.7 

10" 0.119 0.2Oti 0 31jt 0.288 0, ?X(i 
103 0.118 0. ‘05 O:ZS5 0.290 0.313 
10” - - -_ - -- 

0.x o.ti.5 0.9 0.95 1 

103 0.27/t 0. ‘,Kl 0.231 0.210 U 
10’ 0 .3x - - - - 

103 Cl.221 0.2.18 0.207 0 
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2. Let us examine the case of axial tension by a force P == &?a on a cylinder of 
unit radius with an annular slit (Fig. 1) . Let us find the approximate solution of this 

problem under the assumption that the surface of the slit is free of traction, and the shear 
stresses and radial displacements are zero on the side surface of the cylinder. The prob- 

lem is axisymmetric, and the state of stress in the neighborhood of the slit can be obtained 

from an analysis of a semi-infinite cylinder z > 0 for which the following conditions 

r,, (r, O), 0 d I‘ < 0; ( II, (r,O) := 0, 0 < r < a. (2.1) 

(J, (r, 0) = -9, 0 < i- < 1 

are satisfied on the endface z = (,l . In this case the displacement and stress compo- 

nents can be expressed in terms ot one harmonic function [4] 

Taking account of the conditions as z --f 00 , we select the harmonic axisymmetric func- 

tion in the form 

I$ (I”, z) = i A~“A,J, (h,,r) exp (- h,,z) (2.3) 

n-1 

Here J, (2) is a first order Bessel’s function, and h, are the roots of the equation 

jO’ (hrL) == U. The following conditions 

a,, (1, 4 = 0, u, (1,z) = 0 (2.4) 

must be satisfied on the side surface of the cylinder. Satisfying conditions (2.1) we 
obtain the dual series equations 

5 &‘A, J,, (h,r) = 0, O<r<a 
?I=1 

i &Jo @,,r) = -&- , 

(2.5) 

n<r<l 
n=i 

To solve this system, let us assume Cl] 

It follows from the second equation of (2.5) and from (2.6) 

A,, == 2J,‘(h,,) i g (t) cm (A,&) dt 
0 

(1.7) 

CL 

I ’ g(f)& - -$ (223) 
0 

Substituting (2.7) for the coefficients A II in the first equation of (2.5), and taking account 
of the dependence obtained in [l], we find 



304 B.A.Kudriavtsev and V.Z.Parton 

g (t) = [ g(u)K(u, t)du +( 
l 

g (u) du (‘.9) 
0 ;I 
w 

1211 (Y) - y ch (ug) ch (ty)] dy (2.10) 
0 

Thus, the equality (2.9) is a Fredholm integral equation of the second kind to determine 
the function &’ (t). To solve this equation, let us use a power series representation of the 

kernel (2.10) [5] : cx 

Here 

K (u, iq -~= 2 b,,, (u) tzm (2.11) 
mZSJ 

(In -= 1, 2, , * ..) 
(2.12) 

T,s y Kl (?I) 

S=l 
2'S S! (S $_ I)! ' 

T,,, = 
s m yTLdy 
" 

and the numerical values of T, are presented in [5]. 

Expanding the solution of (2.9) in the series 
m 

g P> = c (a) (?I Q2TdZrn (2.13) 
m=o 

we obtain an infinite system of algebraic equations to determine the coefficients Qs, 
m 

Qzm - 2 QwiG1c,2m + am”, nz -=O, 1, 2, (2.14) 

Here 
k=0 

c 4 T” 
a2k+2 

k = . 2k,o 712 -- =o, 1, 2, 

2kfl 
&,;;;;;~; 1)) 

The system (2.14) is quasi-regular for 0 < a < 1. This follows from the asymptotic 

expressions for the functions b,, (u) for large m 

and the estimates 

s 2m+1= jj 1 C2k,2mI < $Ib2,,,(n,)I 11,1-!-n 1 - (1 k=O 
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Thus, starting with some number m = m’ the following inequality is valid 

s ml+1 < 1, m > m’ 

let us indicate here an asymptotic formula to determine the coefficients ?‘, for large n 

Tn - $$[I +;++; (,y+ + . ..I 
For n > 8 the values of Z’, calculated by means of this formula differ by less than 

1.1% from the exact values. We define the constant C (a) so that condition (2.8) 

would be satisfied. We consequently obtain 

c (a) = - -$ ( i Q2m _E)-l 
m=lJ 

(2.15) 

The normal stresses in the z = 0 plane on the continuation of the slit will be deter- 
mined from the formula m 

r.5~ (2.16) 

?I=1 

We substitute (2.13) into (2.16). and isolate the singularity for the stresses at the vertex 
of the slit. We then obtain 

(2.17) 

The terms bounded as r --+ a are discarded here. Formula (2.17) permits determination 
of the stress intensity coefficient [2] and the quantity Qr proportional to the critical 

load 
Kr = 1/K lim [l/a - T’J, (r-,0)] = _ 26 

T-HZ I/ G&Y (a), 
r<a (2.18) 

QI = zq [j”’ 3’dpK;; 

Taking account of (2.15) for the constant C (a) , the stress intensity coefficient in the 
case of a cylinder of radius R is 

For small values of a we have 8, - 1, 

0 - 0 (m = 1, 2, 
fr:t (2.19) that 

. ..) and it follows 

LO Kr -ti,q J&z?’ 

This result derives from the Neuber [S] 

solution of the problem on tension of an 
unbounded solid with an external slot. 

The dependence of the quality Qr on 

a the distance to the vertex of the slit a = 
L?Q a / R is shown in Fig. 4. Presented here 
Fig. 4 for comparison are the Paris (open circles) 

and Biickner (dark circles) data [6]. 
It is obvious that the result obtained above occupies an intermediate position. 
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The plane problem of the theory of elasticity for an unbounded domain, contain- 

ing N arbitrarily situated rectilinear cuts (cracks), is reduced to a system of N 
singular integral equations relative to functions which characterize the discon- 

tinuity of the displacements along the crack lines. The general solution of the 

integral equations for the case of distantly located cracks in the form of a power 
series with respect to a small parameter, is obtained. The problem of rupture is 
also considered. 

In the plane theory of cracks there exist a series of investigations devoted to 

the study of the interactions between cracks which are ordered in a definite 

manner (colinear [ 1- 31, parallel [4, 53, with a chessboard distribution [6] ). By 
the representation of the complex potentials in the form of Laurent series [7], 
we determine approximately the state of stress of an unbounded plate, weakened 
by a system of arbitrarily oriented cracks, in the case of a linear distribution of 

stresses at infinity. We reduce the plane problem of the theory of elasticity for 
an infinite body, containing arbitrarily situated rectilinear cracks and with an 
arbitrary load, to a system of integral equations ; this will allow to solve a series 
of new problems in the mathematical theory of cracks. 

1, Assume that in an elastic plane, related to a Cartesian system of coordinates XOY, 
there exist N cuts (cracks) of length 2ak (k = 1, 2, . . . , N). The centers Ok of the 
cracks are determined by the coordinates zkO =:= x,,.~ + iy,, = d,,.eibs. At the points 
Ok there are located the origins of local systems of coordinates X@~Y,. The axes 
O~X k coincide with the crack lines and form the angles cck with the axis Ox (Fig. 1). 
The boundaries of the cracks are loaded by the self-balancing forces 


